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Abstract

The eigenvalue embedding problem addressed in this paper is the one of reassigning a few troublesome
eigenvalues of a symmetric finite-element model to some suitable chosen ones, in such a way that the updated
model remains symmetric and the remaining large number of eigenvalues and eigenvectors of the original
model is to remain unchanged. The problem naturally arises in stabilizing a large-scale system or combating
dangerous vibrations, which can be responsible for undesired phenomena such as resonance, in large
vibrating structures. A new computationally efficient and symmetry preserving method and associated
theories are presented in this paper. The model is updated using low-rank symmetric updates and other
computational requirements of the method include only simple operations such as matrix multiplications and
solutions of low-order algebraic linear systems. These features make the method practical for large-scale
applications. The results of numerical experiments on the simulated data obtained from the Boeing company
and on some benchmark examples are presented to show the accuracy of the method. Computable error
bounds for the updated matrices are also given by means of rigorous mathematical analysis.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Vibrating structures such as bridges, highways, buildings, automobiles, air and space crafts,
etc., are very often modelled by using finite-element methods (FEMs). These methods generate
structured systems of matrix second-order differential equations of the form

M €xþ C _xþ Kx ¼ 0, (1)

where the coefficient matrices M, C and K are called, respectively, the mass, damping and stiffness
matrices. In most applications, these matrices have very special exploitable properties such as the
symmetry, positive definiteness, sparsity and others. The matrix M is often symmetric positive
definite and denoted by M40; and K is symmetric positive semi-definite, denoted by KX0. The
damping matrix C is hard to determine in practice; however, very often, for the sake of
computational convenience and other practical considerations, it is assumed to be symmetric.
It is critical and very important that these properties are preserved while solving a vibration

problem or updating a FEM to achieve certain design objectives.
In this paper, we will assume throughout that M40; K40 and C ¼ CT.
The classical approach is to use separation of variables, accounting for a solution xðtÞ ¼ yelt to

(1), where y is a constant vector. This leads to the quadratic matrix eigenvalue problem

FðlkÞyk ¼ 0; k ¼ 1; 2; . . . ; 2n,

where

F ðlÞ ¼ l2M þ lC þ K (2)

is the so-called associated quadratic matrix pencil. The quantities ðlk; ykÞ, k ¼ 1; . . . ; 2n are the
eigenpairs of the pencil (2).
It is well-known [1] that the dynamical behavior of a vibrating system, which can show

undesired phenomena such as instability and resonance, is determined by their natural frequencies
and corresponding mode shapes, that is, the eigenvalues and eigenvectors of the pencil F ðlÞ. It is
desirable that such behaviors are altered by making minimal changes in the system and keeping
the structural properties invariant, as much as possible. Realistically, while dealing with a large
system, it is often found in practice that only a small number of eigenvalues are ‘‘troublesome’’.
Thus, it makes sense to reassign to suitable locations, chosen by the designer, only these
troublesome eigenvalues, while keeping the remaining large number of eigenvalues unchanged.
Such a problem in control theory is known as the partial pole-placement problem and feedback

control is used to solve this problem. For the standard first-order state–space systems of the form
_xðtÞ ¼ AxðtÞ þ BuðtÞ, though there exist many numerical methods for the complete pole-placement
(see Ref. [2] for details), only two methods have so far been developed for the partial pole-
placement problem: (i) the projection method due to Saad [3], and (ii) the Sylvester equation
method by Datta and Sarkissian [4]. For a matrix second-order system, the choices are either to
transform the latter to a standard first-order form and then use one of the above methods or to
use the Independent Modal Space Control (IMSC) approach [1]. Both have some severe
engineering and computational limitations. The first approach might require an ill-conditioned
matrix inversion or solution of a descriptor control problem (no method still exists for the partial
pole-placement in descriptor systems). The IMSC approach requires complete knowledge of the
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spectrum and the associated eigenvectors of the quadratic pencil (1) for decoupling of the open-
loop pencil. Furthermore, the decoupling of the closed-loop pencil requires some very stringent
conditions on actuators and sensors [1], which is unpractical for real-life applications.
In several recent papers [5–10] numerically effective methods have been developed for both the

partial pole-placement and eigenstructure assignment problems; they overcome the difficulties
associated with the above two approaches. These methods are designed directly in matrix second-
order setting without resorting to first-order transformations and without requiring complete
knowledge of the spectrum of the pencil F ðlÞ, as needed by the IMSC approach [1]. Although they
satisfy control design requirements and are practical for control applications, unfortunately, they
are not capable of preserving the symmetry of the original model.
In this paper, a novel symmetry preserving partial spectrum assignment method for vibrating

system (1) is proposed. Specifically, the following problem is solved:
Let flig

2n
i¼1 and fyig

2n
i¼1 be, respectively, the spectrum and the eigenvector set of F ðlÞ. Given (i)

symmetric n� n matrices M;C; and K of the pencil (2) with M40; KX0, and C ¼ CT, (ii) a part
of the spectrum fl1; . . . ; lrg; rp2n of FðlÞ and the corresponding eigenvectors fy1; . . . ; yrg, and
(iii) a set of r complex conjugate numbers fm; . . . ; mrg. Assuming the both sets fl1; . . . ; lng and
fm1; . . . ; mrg are closed under complex conjugations, find real symmetric matrices Mnew;Cnew; and
Knew such that the spectrum of Fnew ¼ l2Mnew þ lCnew þ Knew is fm1; . . . ; mr; lrþ1; . . . ; l2ng

andfurthermore, the eigenvectors corresponding to lrþ1; . . . ; l2n remain unchanged. Furthermore,
characterize the eigenvectors of Fnew corresponding to m1; . . . ;mr.
The last property is highly significant from practical applications view points. It says that

certain important physical properties of the system are completely preserved by updating.
However, the most important benefits obtained by this new method over the existing non-
symmetric pole-placement methods for the second-order model are that the updated model remains

symmetric and the changes made in the data matrices M;K ; and C might be significantly less than
those obtained by the pole-placement algorithms usingg feedback control.
To distinguish this problem from the partial pole-placement problem in control theory, we will

call this problem ‘‘Eigenvalue Embedding’’ Problem (EEP). Our major contributions to EEP in
this paper are as follows:
(i)
 An algorithm and associated theories are developed, using low-rank symmetric updates.

(ii)
 Computable error bounds are derived by means of rigorous error analysis.

(iii)
 The accuracy of the algorithm is demonstrated by both an illustrative, and a real-life example

with simulated data from the Boeing Company.

(iv)
 A complete characterization of the eigenvectors of the updated model is also given. It is

shown by mathematical proofs that the eigenvectors corresponding to the eigenvalues which
are not reassigned also remain invariant.
Finally, it is noted that the EEP addressed in this paper is clearly related to the well-known
problem in vibrating engineering, called ‘‘Finite-Element Model Updating Problem’’ (FEMUP).
The FEMUP is concerned with updating a symmetric FEM in such a way that the updated model
remains symmetric and a set of measured eigenvalues and eigenvectors are incorporated into the
updated model, while the other eigenvalues and eigenvectors remain invariant or at least do not
spill over the regions of resonance and instability.
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The problem has been well-studied: a couple of hundred papers and a book [11] have been
published on the problem. For an extensive list of papers on this topic, see the reference list of the
book [11]. The existing so-called ‘‘direct methods’’ [11–15] can reproduce the given set of measured
data, but cannot guarantee that the remaining eigenvalues and eigenvectors of the FEM remain
unchanged. Furthermore, these methods deal with undamped systems only; thus the underlying
eigenvalue problem in this setting is a generalized eigenvalue problem in the liner pencil K � lM

[2,16] rather than quadratic eigenvalue problem for the pencil (2). The quadratic eigenvalue
problem is much harder to solve numerically [17].
The solution proposed in this paper for EEP can be considered as a partial but meaningful

solution to the FEMUP. In contrast with the existing direct methods for FEMUP, the
proposed method deals with the damped second-order model and can guarantee mathematically
that the eigenvalues and eigenvectors that do not participate in the updating process remain
unchanged.
2. Embedding of a real eigenvalue

In this section, we construct the updated matrices Mnew, Knew and Cnew, such that a distinct real
eigenpair ðl1; y1Þ of the pencil FðlÞ ¼ l2M þ lC þ K is replaced by ðm1; y1Þ, where m1 is
preassigned; m1al1, and the other eigenvalues and eigenvectors remain invariant. To achieve this
goal, we consider a low-rank transformation, called the non-equivalence transformation for the
quadratic matrix pencil FðlÞ. A non-equivalence transformation for the rational l-matrix
functions has been previously considered in Refs. [18–23]. However, the non-equivalence
transformation reported in this paper cannot be derived by using a straightforward generalization
of the results in the above papers.
Since ðl1; y1Þ is a real eigenpair of FðlÞ, we have

Fðl1Þy1 � ðl
2
1M þ l1C þ KÞy1 ¼ 0. (3)

Since K is positive definite, the eigenvector y1 can be normalized such that y>1 Ky1 ¼ 1. Suppose
that l1 2 R is a distinct unwanted eigenvalue that needs to be replaced by a prescribed real
number m1. The following theorem provides a non-equivalence transformation of FðlÞ such that
the updated matrix pencil, FnewðlÞ, keeps the eigenstructure of F ðlÞ except that m1 replaces l1 to
become an eigenvalue of FnewðlÞ.

Theorem 1 (Real eigenvalue embedding). Let ðl1; y1Þ be a distinct real eigenpair of FðlÞ with

y>1 Ky1 ¼ 1, suppose m1al1, and

1� l1m1y1a0 and 1� l21y1a0

and define

y1 ¼ y>1 My1, (4)

e1 ¼
l1 � m1

1� l1m1y1
. (5)
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Then the updated matrix pencil

FnewðlÞ ¼ l2Mnew þ lCnew þ Knew, (6)

where

Mnew ¼M � e1l1My1y
>
1 M,

Cnew ¼ C þ e1ðMy1y
>
1 K þ Ky1y

>
1 MÞ,

Knew ¼ K �
e1
l1

Ky1y
>
1 K ð7Þ

is symmetric, and has the following spectral properties:
(a)
 The number m1 is in the spectrum of FnewðlÞ and the remaining eigenvalues of FnewðlÞ are the
same as those of FðlÞ.
(b)
 (i) y1 is also an eigenvector of FnewðlÞ corresponding to the eigenvalue m1. (ii) The remaining
eigenvectors of FnewðlÞ are the same as those of FðlÞ; that is, if l2al1 and ðl2; y2Þ is an eigenpair

of F ðlÞ, then it is also an eigenpair of FnewðlÞ.
Proof. (a) Substituting the result of Eq. (3) into FðlÞ, we obtain

F ðlÞy1 ¼ l2My1 þ lCy1 þ Ky1

¼ l2My1 þ lCy1 � l21My1 � l1Cy1

¼ ðl� l1Þððlþ l1ÞM þ CÞy1. ð8Þ

By using the identity

detðIn þ RSÞ ¼ detðIm þ SRÞ, (9)

where R 2 Cn�m and S 2 Cm�n, together with Eq. (8), we have

detðFnewðlÞÞ ¼ detðl2Mnew þ lCnew þ KnewÞ

¼ det l2M þ lC þ K � l2e1l1My1y
>
1 M

�
þle1ðMy1y

>
1 K þ Ky1y

>
1 MÞ �

e1
l1

Ky1y
>
1 K

�
¼ detðF ðlÞ þ e1ððlþ l1ÞM þ CÞy1y

>
1 ðK � ll1MÞÞ

¼ det F ðlÞ þ
e1

l� l1
F ðlÞy1y

>
1 ðK � ll1MÞ

� �
¼ detðF ðlÞÞ 1þ

e1
l� l1

ð1� ll1y1Þ
� �

¼
detðF ðlÞÞ
l� l1

ðl� l1 þ e1ð1� ll1y1ÞÞ.
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Since 1� l21y1a0, we now use Eq. (5) to get

l� l1 þ e1ð1� ll1y1Þ ¼ ðl� m1Þ
ð1� l21y1Þ
1� l1m1y1

.

Therefore, we conclude that detðFnewðlÞÞ has the same roots as detðF ðlÞÞ, except that l1 is replaced
by m1.
(b) We first prove (b)(i). From Eq. (7), we have

Fnewðm1Þy1 ¼ m21ðM � �1l1My1y
>
1 MÞy1 þ m1ðC þ �1

�ðMy1y
>
1 K þ Ky1y

>
1 MÞÞy1 þ K �

�1
l1

Ky1y
>
1 K

� �
y1 ð10Þ

¼ ðm21 � m21�1l1y1 þ m1�1ÞMy1 þ m1Cy1 þ m1�1y1 þ 1�
�1
l1

� �
Ky1. ð11Þ

Again using Eq. (5), we have

m1�1y1 þ 1�
�1
l1
¼ �1

l1m1y1 � 1

l1

� �
þ 1 ¼

m1
l1

. (12)

Since Fðl1Þy1 ¼ 0, we have

Ky1 ¼ �l
2
1My1 � l1Cy1. (13)

Substituting Eqs. (12) and (13) into Eq. (10), we then obtain

Fnewðm1Þy1 ¼ ðm
2
1 � m21�1l1y1 þ m1�1 � l1m1ÞMy1.

Once more, from Eq. (5), we conclude that

m21 � m21�1l1y1 þ m1�1 � l1m1 ¼ m1ðm1 � l1Þ þ m1�1ð1� m1l1y1Þ

¼ m1ðm1 � l1Þ þ m1ðl1 � m1Þ

¼ 0.

This implies that Fnewðm1Þy1 ¼ 0, and so (b)(i) is proven.
To prove (b)(ii), we observe that

Fðl2Þy2 ¼ ðl
2
2M þ l2C þ KÞy2 ¼ 0,

that is, Ky2 ¼ �l
2
2My2 � l2Cy2. This implies

Fðl1Þy2 ¼ ðl1 � l2Þððl1 þ l2ÞM þ CÞy2. (14)
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Using the same arguments as in the proof of (a) and Eq. (14), we obtain

Fnewðl2Þy2 ¼ ðl
2
2Mnew þ l2Cnew þ KnewÞy2

¼ Fðl2Þy2 þ
e1

l2 � l1
ðF ðl2Þy1y

>
1 ðK � l2l1MÞy2Þ

¼
e1

l2 � l1
ðF ðl2Þy1y

>
1 ð�l2ððl1 þ l2ÞM þ CÞÞy2Þ

¼
�l2e1
ðl2 � l1Þ

2
ðFðl2Þy1y

>
1 F ðl1Þy2Þ

¼ 0.

Hence, ðl2; y2Þ is also an eigenpair of FnewðlÞ. &

Remarks. (i) Note that if l1 ¼ m1, then �1 ¼ 0, and there will be no updating at all. Of course, in
practice, it does not make any sense to reassign an eigenvalue which is not desirable to have in the
spectrum.
(ii) An alternative and shorter proof of Theorem 1, using orthogonality relations between the

eigenvectors of a symmetric positive semi-definite pencil, appear in the Ph.D. Dissertation of
Carvalho [24] (available from the website: www.math.niu.edu/~dattab).
3. Embedding of a complex conjugate pair of eigenvalues

We now develop the results in this section, analogous to those of Theorem 1, to show how to
compute the updated symmetric matrices Mnew, Knew and Cnew, such that a distinct complex
conjugate pair of eigenvalues, m1 and m̄1 is assigned to the spectrum of FnewðlÞ, while the other
eigenvalues of FnewðlÞ and the corresponding eigenvectors remain the same as those of FðlÞ. We
also give a characterization of the eigenvectors associated with the complex conjugate pair that is

reassigned. For simplicity, a matrix pair ðL;Y Þ satisfying

MYL2 þ CYLþ KY ¼ 0

will be called an eigenpair of F ðlÞ. The notation spec ðTÞ stands for spectrum of the matrix T.
Let ðl1; y1Þ be a complex eigenpair of F ðlÞ, associated with a distinct eigenvalue l1 ¼ a1 þ ib1,

a1, b1 2 R, b1a0, and y1 ¼ y1r þ iy1i, y1r, y1i 2 R
n. Suppose that y1r and y1i are linearly

independent, then y1 and ȳ1 are linearly independent, and ðl̄1; ȳ1Þ is also an eigenpair of F ðlÞ.
Since ðl1; y1Þ is an eigenpair of FðlÞ, we have

MZ1L2
1 þ CZ1L1 þ KZ1 ¼ 0, (15)

where

L1 ¼
a1 b1
�b1 a1

" #
and Z1 ¼ ½y1r y1i�.

http://www.math.niu.edu/~dattab
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Thus, ðL1;Z1Þ is an eigenpair of F ðlÞ. Since K is positive definite, S1 ¼ Z>1 KZ1 is also positive
definite. Thus there exists an orthogonal matrix S1 2 R2�2, and a positive diagonal matrix

D1 ¼
d1 0

0 d2

" #
,

such that

S1 ¼ S1D1D1S
>
1 .

Therefore, the definitions

Y 1 ¼ Z1S1D
�1
1 , (16)

L1 ¼ D1S
>
1 L1S1D

�1
1 , (17)

clearly imply

Y>1 KY 1 ¼ I2,

L1 ¼
d1 0

0 d2

" #
a1 b1
�b1 a1

" # 1

d1
0

0
1

d2

2664
3775 ¼ a1 b1=d

�db1 a1

" #
,

where d ¼ d1=d2.
To present our main result, we need the following Lemma.

Lemma 2. Given a complex number, m1 ¼ j1 þ ic1, c1a0, there is a real diagonal matrix, EM , such
that m1 is an eigenvalue of the matrix pair

ðL1L>1 � EM ; L>1 � EMY1L>1 Þ,

where Y1 ¼ Y>1 MY 1 and Y 1, L1 are given by Eqs. (16) and (17), respectively.

Proof. Let

Y1 ¼ Y>1 MY 1 ¼
y11 y12
y12 y22

" #
and EM ¼

x 0

0 Z

" #
2 R2�2,

where x, Z are two unknowns. By expanding the following two conjugated equations:

det½m1ðL
>
1 � EMY1L>1 Þ � ðL1L>1 � EMÞ� ¼ 0,

det½m̄1ðL
>
1 � EMY1L>1 Þ � ðL1L>1 � EMÞ� ¼ 0, ð18Þ

we conclude that x, Z satisfy a system of two real two degree polynomials

p1 þ p2xþ p3Zþ p4xZ ¼ 0,

q1 þ q2xþ q3Zþ q4xZ ¼ 0, ð19Þ
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where

p1 ¼ 2ðj1r1 � a1s1Þ,

p2 ¼ s1 a1y11 þ
a1
r1
þ db1y12

� �
�

2j1

r1
ða21 þ d2b21Þ,

p3 ¼ s1
a1
r1
þ a1y22 �

b1y12
d

� �
�
2j1

r1
a21 þ

b21
d2

� �
,

p4 ¼
s1
r1

db1y12 �
b1y12

d
� a1y11 � a1y22

� �
þ

2j1

r1
,

q1 ¼ s1 � r1,

q2 ¼
1

r1
ða21 þ d2b21Þ � s1y11,

q3 ¼
1

r1
a21 þ

b21
d2

� �
� s1y22,

q4 ¼ s1ðy11y22 � y212Þ �
1

r1
.

Here, yj;k is the ðj; kÞth entry of Y1, j, k ¼ 1; 2; r1 ¼ a21 þ b21 and s1 ¼ j2
1 þ c2

1. Hence, from Eq.
(19), we can find EM by setting

x ¼ �
q1 þ q3Z
q2 þ q4Z

and Z ¼
�‘2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘22 � 4‘1‘3

q
2‘1

, (20)

where ‘1 ¼ p3q4 � p4q3, ‘2 ¼ p1q4 � p2q3 þ p3q2 � p4q1 and ‘3 ¼ p1q2 � p2q1. &

Remark 3.1. (i) It is easily seen from above that x and Z are real provided that ‘22 � 4‘1‘3X0. This
will always happen whenever the assumptions of Lemma 2 hold. (ii) Formula (20) usually will give
two possibly solution pairs ðx; ZÞ. The pair ðx; ZÞ that gives the smaller matrix norm kEMk should
be chosen in a numerical implementation.

The next theorem provides a low-rank transformation of the matrix pencil F ðlÞ, such that the
eigenvalues of the updated symmetric pencil FnewðlÞ are the same as those of F ðlÞ, except for the
complex pair of eigenvalues ðl1; l̄1Þ of FðlÞ that is replaced by a prescribed complex pair of
numbers ðm1; m̄1Þ.

Theorem 3 (Embedding of a pair of complex conjugate eigenvalues). Let Y 1 and L1 be the same as

those defined in Eqs. (16) and (17). Let EM be the same as in Lemma 2. Define

Mnew ¼M �MY 1EMY>1 M,

Cnew ¼ C þMY 1ECY>1 K þ KY 1E
>
CY>1 M,

Knew ¼ K � KY 1EK Y>1 K, ð21Þ
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where

EK ¼ L�11 EML�>1 and EC ¼ EML�>1 . (22)

Then the real symmetric pencil FnewðlÞ ¼ l2Mnew þ lCnew þ Knew has the following properties:
(i)
 The eigenvalues of the matrix pencil FnewðlÞ are the same as those of F ðlÞ except that the pair of

complex conjugate eigenvalues l1; l̄1 of FðlÞ are replaced by the complex conjugate numbers
m1; m̄1.
(ii)
 The eigenvectors associated with the other eigenvalues remain the same as those of the original
pencil.
(iii)
 The eigenvector associated with m1 is given by ȳ1 ¼ Y 1X 1e1, where X 1 is a non-singular matrix

that diagonalizes the matrix
f1

�c̄1

c1

f1

� �
, and e1 is the first unit vector. (Note that m1 ¼ f1 þ ic1.)
Proof. (i) From Eq. (15) and the definitions of Y 1 and L1, we see that ðL1;Y 1Þ is an eigenpair of
F ðlÞ and therefore

MY 1L2
1 þ CY 1L1 þ KY 1 ¼ 0.

Now, letting L ¼ lI2, we have

FðlÞY 1 ¼ ðl
2M þ lC þ KÞY 1

¼ ðMY 1ðLþ L1Þ þ CY 1ÞðL� L1Þ. ð23Þ

From Eqs. (21)–(23), we obtain

FnewðlÞ ¼ l2Mnew þ lCnew þ Knew

¼ FðlÞ þ lMY 1ECY>1 K � KY 1EKY>1 K þ lKY 1E
>
CY>1 M

� l2MY 1EMY>1 M

¼ FðlÞ þ ðCY 1 þMY 1ðLþ L1ÞÞL1EK ðY
>
1 K � lL>1 Y>1 MÞ

¼ FðlÞ þ F ðlÞY 1ðL� L1Þ
�1L1EK ðY

>
1 K � lL>1 Y>1 MÞ.

This implies

det½FnewðlÞ� ¼ det½F ðlÞ þ F ðlÞY 1ðL� L1Þ
�1L1EK ðY

>
1 K � lL>1 Y>1 MÞ�

¼ det½F ðlÞ� det½In þ Y 1ðL� L1Þ
�1L1EK ðY

>
1 K � lL>1 Y>1 MÞ�

¼ det½F ðlÞ� det½I2 þ ðL� L1Þ
�1L1EK ðI2 � lL>1 Y1Þ�

¼
det½F ðlÞ�

ðl� l1Þðl� l̄1Þ
det½ðlI2 � L1Þ þ L1EK ðI2 � lL>1 Y1Þ�

¼
det½F ðlÞ�

ðl� l1Þðl� l̄1Þ
det½lðI2 � L1EKL>1 Y1Þ � L1ðI2 � EK Þ�.
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By Lemma 3.1, the pair fm1; m̄1g is a complex conjugate pair of the eigenvalues of the matrix pencil
ðL1L>1 � EM ;L>1 � EMY1L>1 Þ. This implies that

det½lðI2 � L1EKL>1 Y1Þ � L1ðI2 � EK Þ� ¼
ðl� m1Þðl� m̄1Þ

l1l̄1
.

Therefore, FnewðlÞ has the same eigenvalues as FðlÞ, except that l1, l̄1 are now replaced by m1, m̄1.
(ii) Let l2 ¼ a2 þ ib2 and y2 ¼ y2r þ iy2i. Define Y 2 and L2 in the same way as Y 1 and L1 have

been defined in Eqs. (15)–(17). Then ðL1;Y 1Þ and ðL2;Y 2Þ are eigenpairs of FðlÞ, with Y>1 KY 1 ¼

I2 and Y>2 KY 2 ¼ I2. Thus

Y>2 KY 1 þ Y>2 CY 1L1 þ Y>2 MY 1L2
1 ¼ 0, (24)

Y>2 KY 1 þ L>2 Y>2 CY 1 þ ðL>1 Þ
2Y>2 MY 1 ¼ 0. (25)

Eliminating the terms involving ‘‘Y>2 CY 1’’ from Eqs. (24) and (25), we have

L>2 ðY
>
2 KY 1Þ � ðY

>
2 KY 1ÞL1 þ L>2 ðY

>
2 MY 1ÞL2

1 � ðL
>
2 Þ

2
ðY>2 MY 1ÞL1 ¼ 0.

Let KY ¼ Y>2 KY 1; MY ¼ Y>2 MY 1. Let � and vecð�Þ denote the Kronecker product and
vectorizing operator, respectively. Then vectorizing the last equation, we have

ðI � L>2 � L>1 � IÞvecðKY Þ ¼ vecðL>2 ðL
>
2 MY �MYL1ÞL1Þ

¼ ðL>1 � L>2 ÞvecðL
>
2 MY �MYL1Þ

¼ ðL>1 � L>2 ÞðI � L>2 � L>1 � IÞvecðMY Þ

¼ ðI � L>2 � L>1 � IÞðL>1 � L>2 ÞvecðMY Þ.

Suppose l1al2, then specðL1Þ \ specðL2Þ ¼ ;. This implies that the matrix ðI � L>2 � L>1 � IÞ is
non-singular and hence, ðL>1 � L>2 ÞðvecðMY ÞÞ ¼ vecðKY Þ. Thus,

Y>2 KY 1 ¼ L>2 ðY
>
2 MY 1ÞL1. (26)

Since ðL2;Y 2Þ is an eigenpair of F ðlÞ, we have

MY 2L2
2 þ CY 2L2 þ KY 2 ¼ 0.

From Eq. (21) it then follows that

MnewY 2L2
2 þ CnewY 2L2 þ KnewY 2

¼ ðM �MY 1EMY>1 MÞY 2L2
2 þ ðC þMY 1ECY>1 K þ KY 1E

>
CY>1 MÞY 2L2

þ ðK � KY 1EKY>1 KÞY 2

¼MY 2L2
2 �MY 1EMY>1 MY 2L2

2 þ CY 2L2 þMY 1ECY T
1 KY 2L2

þ KY 1E
>
CY>1 MY 2L2 þ KY 2 � KY 1EKY T

1 KY 2

¼ �MY 1L1EKL>1 Y>1 MY 2L2
2 þMY 1L1EKY>1 KY 2L2 þ KY 1EkL>1 Y>1

�MY 2L2 � KY 1EK Y>1 KY 2

¼MY 1L1EK ðY
>
1 KY 2L2 � L>1 Y>1 MY 2L2

2Þ þ KY 1EK ðL>1 Y>1 MY 2L2 � Y>1 KY 2Þ.

Using Eq. (26), we then obtain that MnewY 2L2
2 þ CnewY 2L2 þ KnewY 2 ¼ 0.
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(iii) Let O1 ¼
j1

�c1

c1
j1

h i
, where m1 ¼ j1 þ ic1 is a complex eigenvalue of FnewðlÞ, with c1a0.

From Eq. (18), there exists a non-singular matrix V1 2 R2�2 such that

ðI2 � L1EKL>1 Y1ÞV1O1 � L1ðI2 � EK ÞV1 ¼ 0.

By setting O1 ¼ V1O1V
�1
1 , we obtain

ðI2 � L1EKL>1 Y1ÞO1 � L1ðI2 � EK Þ ¼ 0. (27)

Now,

MnewY 1O2
1 þ CnewY 1O1 þ KnewY 1 ¼MY 1ðO2

1 � EMY1O2
1 þ ECO1Þ þ CY 1O1

þ KY 1ðE
>
CY1O1 þ I2 � EK Þ, ð28Þ

whereY1 ¼ Y>1 MY 1. Since ðL1;Y 1Þ is an eigenpair of FðlÞ, andO1 satisfies Eq. (27), we conclude that

CY 1O1 þ KY 1ðE
>
CY1O1 þ I2 � EK Þ

¼ CY 1O1 þ ð�MY 1L2
1 � CY 1L1ÞðEKL>1 Y1O1 þ I2 � EK Þ

¼ �MY 1L2
1ðEKL>1 Y1O1 þ I2 � EK Þ þ CY 1½ðI2 � L1EKL>1 Y1ÞO1 � L1ðI2 � EK Þ�

¼ �MY 1L2
1ðEKL>1 Y1O1 þ I2 � EK Þ.

Therefore, Eq. (28) becomes

MY 1½O2
1 � EMY1O2

1 þ ECO1 � L2
1ðEKL>1 Y1O1Þ � L2

1ðI2 � EK Þ�

¼MY 1½ððI2 � EMY1ÞO1 � L1ðI2 � EK ÞÞO1 þ L1ððI2 � EMY1Þ

�O1 � L1ðI2 � EK ÞÞ�

¼ 0.

Thus, ðY 1;O1Þ is an eigenpair of FnewðlÞ. Letting T1O1T
�1
1 ¼ ð

m1
0

0
m̄1
Þ and setting X ¼ T1V1, the (iii) is

proved. &

Based on the above theorem, we present the following algorithm for assigning a pair of complex
conjugate numbers to be eigenvalues of the updated symmetric matrix pencil.

Algorithm 3.1 (Assignment of a Pair of Complex Conjugate Eigenvalues).
Input:
(i)
 An unwanted distinct complex eigenvalue, l1 ¼ a1 þ ib1; a1; b1 2 R; b1a0 (and its complex
conjugate), and the corresponding eigenvector, y1 ¼ y1r þ iy1i, y1r; y1i 2 R

n, with y1r, y1i being
linearly independent.
(ii)
 A pair of complex conjugate numbers, m1 and m̄1, that needs to be embedded.

(iii)
 Symmetric matrices, M, C and K, with M, and K positive definite.
Output: Symmetric matrices Mnew, Cnew and Knew such that the updated pencil FnewðlÞ ¼
l2Mnew þ Cnewlþ Knew has the eigenpair fm1; m̄1g in its spectrum, the remaining eigenvalues and
eigenvectors are the same, and the eigenvector associated with m1 is given by Y 1X 1e1; where Y 1

and X 1 are as defined in Theorem 3.
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Step 1: Use Eqs. (16) and (17) to find the eigenpair ðL1;Y 1Þ of the original matrix pencil

F ðlÞ ¼ l2M þ lC þ K such that specðL1Þ ¼ fl1; l̄1g and Y>1 KY 1 ¼ I2.

Step 2: Determine x and Z by using formula (20).
If x or Z is complex then stop and return to Step 1.

Step 3: Set EM ¼
x
0

0
Z

h i
, EK ¼ L�11 EML�>1 and EC ¼ EML�>1 .

Step 4: Computed the updated matrices

Mnew ¼M �MY 1EMY>1 M,

Cnew ¼ C þMY 1ECY>1 K þ KY 1E
>
CY>1 M,

Knew ¼ K � KY 1EK Y>1 K.

Remark 3.2. Above, we have discussed how to replace an unwanted complex conjugate pair
fl1; l̄1g by a prescribed conjugate pair ðm1; m̄1Þ, assuming that the associated eigenvector y1 ¼
y1r þ iy1i is such that y1r and y1i are linearly independent.
We now consider the degenerate case where the real and the imaginary parts of the eigenvector,

y1r and y1i are linearly dependent. In this case, the eigenvectors corresponding to l1 and l̄1, are
also linearly dependent. Hence, the eigenvector y1 can be a real vector, i.e., y1 2 R

n. Since both
ðl1; y1Þ and ðl̄1; y1Þ are eigenpairs of F ðlÞ, we have

l21My1 þ l1Cy1 þ Ky1 ¼ 0,

l̄
2

1My1 þ l̄1Cy1 þ Ky1 ¼ 0.

Then, we obtain ðl1 þ l̄1ÞMy1 þ Cy1 ¼ 0. This implies that Cy1==My1, and thus, Ky1==My1. Let
Q 2 Rn�n be an orthogonal matrix such that Q>y1 ¼ e1. LeteM ¼ Q>MQ; eC ¼ Q>CQ; eK ¼ Q>KQ,

then the first columns of eM, eC, eK are mutually parallel. Furthermore, since eM, eC, eK are

symmetric, the first row vectors of eM, eC, eK are also mutually parallel. Hence, if we apply an

elementary matrix L to eliminate the second through the nth elements of the column of eM (see

Ref. [16]) then the first columns and rows of the matrices L eML>, L eCL>, L eKL> are parallel to e1.
Hence, the dimension of the quadratic problem in this case can be reduced to n� 1 by removing

the first row and column of matrices L eML>, L eCL>, L eKL>simultaneously. Thus, the unwanted

eigenvalues l1 and l̄1 are deflated simultaneously, reducing the dimension of the problem by 1.
Algorithm 3.1 now can be applied to the reduced problem.

Remark 3.3. In case l1 ¼ a1 þ ib1 2 C is a multiple eigenvalue, the formula (21) can still be used
to update the matrices M;C and K; however, in this case to construct Y 1 we must consider not
only the eigenvector y1, but the associated generalized eigenvector as well. Thus, if l1 is an
eigenvalue with multiplicity 2, then Y 1 is computed by normalizing ½y1r; y1i; z1r; z1i� with

Y>1 KY 1 ¼ I4, and y1r, z1rðy1i; z1iÞ are, respectively, the real (and imaginary) parts of y1, z1, and EM

is diagonal and is yet to be determined, EC ¼ EM
eL�>1 , EK ¼ eL�11 EM

eL�>1 . In addition, eL1 2 R
4�4

is similar to L1

0
I
L1

h i
, and L1 ¼

a1
�b1

b1
a1

h i
. The matrix EM can be found by the following
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system of equations:

detðFnewðm1ÞÞ ¼ 0; detðFnewðm̄1ÞÞ ¼ 0,

d

dl
½detðFnewðm1ÞÞ� ¼ 0;

d

dl
½detðFnewðm̄1ÞÞ� ¼ 0.

An Illustrative Example. Consider application of Algorithm 3.1 to a free beam with
I ¼Moment of inertia ¼ 1:136� 10�9 m4,
E ¼ Young’s modulus ¼ 72Gpa,
l ¼ Length of the beam ¼ 0:4005m.
The stiffness matrix has the form

K ¼
EI

l3

12 6l �12 6l

6l 4l2 �6l 2l2

�12 �6l 12 �6l

6l 2l2 �6l 4l2

0BBB@
1CCCA.

With the above values of I ;E, and l, we have

K ¼ 104

1:5330 0:3066 �1:5330 0:3066

0:3066 0:0818 �0:3066 0:0409

�1:5330 0:3066 1:5330 �0:3066

0:3066 0:0409 �0:3066 0:0818

0BBB@
1CCCA,

M ¼

0:1349 0:0076 0:0467 �0:0045

0:0076 0:0006 0:0045 �0:0004

0:0467 0:0045 0:1349 �0:0076

�0:0045 �0:0004 �0:0076 0:0006

0BBB@
1CCCA,

D ¼ 0.

The eigenvalues of F ðlÞ are: 103ð�5:4363i;�1:5916i; 0; 0; 0; 0Þ. The pair of the complex
eigenvalues, 103ð�1:5916iÞ were charged to 103ð�1:3509iÞ, obtained from an experiment at the
vibration laboratory at Northern Illinois University.
The updated stiffness matrix is given by

Knew ¼ 104

1:5330 0:3066 �1:5330 0:3066

0:3066 0:0787 �0:3066 0:0440

�1:5330 �0:3066 1:5330 �0:3066

0:3066 0:0440 �0:3066 0:0787

0BBB@
1CCCA.

The entries of the updated mass matrix Mnew are almost the same as those of the original matrix
and the entries of the matrix Dnew are of Oð10�14Þ. The results on both 1 and 10 elements of the
beam are displayed in the accompanying figures (Figs. 1–4).
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Fig. 2. Percent change in the diagonal entries of the stiffness matrix for one beam element.
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Fig. 1. Percent change in the diagonal entries of the stiffness matrix for ten beam element.
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4. Error analysis for the assignment of a complex conjugate pair of eigenvalues

In this section k � k denotes the 2-norm, ^ (hat) denotes a computed quantity and the term HOT
stands for ‘‘the higher-order terms.’’
First, we estimate the error bounds for the computed Mnew. From Eq. (21), we have

k bMnew �Mnewk ¼ kM bY 1
bEM

bY>1 M �MY 1EMY>1 Mk

pkMk2k bY 1
bEM

bY>1 � Y 1EMY>1 k. ð29Þ
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By using the triangular inequality, we obtain

k bY 1
bEM

bY>1 � Y 1EMY>1 k

pk bY 1
bEM

bY>1 � bY 1
bEMY>1 k þ k

bY 1
bEMY>1 �

bY 1EMY>1 k

þ k bY 1EMY>1 � Y 1EMY>1 k þ k
bY 1 � Y 1k kEMY>1 k

pk bY 1
bEMkk bY 1 � bY 1 � Y 1k þ k bY 1kk bYkk bEM � EMk þ k bY 1 � Y 1kkEMY>1 k

p½ðk bY 1 � Y 1k þ kY 1kÞk bEM � EMk þ k bY 1 � Y 1k kEMk þ kY 1EMk�k bY 1 � Y 1k

þ ðk bY 1 � Y 1k þ kY 1kÞkY 1k k bEM � EMk þ k bY 1 � Y 1k kEMY>1 k. ð30Þ
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From the definition of Y 1 in Eq. (16), we then have

k bY 1 � Y 1k ¼ k bZ1
bS1
bD�11 � Z1S1D

�1
1 k ð31Þ

p½ðk bZ1 � Z1k þ kZ1kÞkbS1 � S1k þ k bZ1 � Z1k kS1k þ kZ1S1k�k bD�11 �D�11 k

þ ðk bZ1 � Z1k þ kZ1kÞkD
�1
1 k k

bS1 � S1k þ k bZ1 � Z1k kS1D
�1
1 k. ð32Þ

It is known (see Ref. [17]) that the error bound for Z1 satisfies

k bZ1 � Z1kpc1e, (33)

where

c1 ¼
X2n

k¼2

kzkk

jlk � l1jð1þ jlkl1jÞjzHk y1j
,

zk and yk are, respectively, the left and right eigenvectors corresponding to the eigenvalue lk of
F ðlÞ, Zk ¼ ½ykr yki�. Similarly,

kbS1 � S1kpc2e, (34)

where c2 is a constant. Since D1 ¼ ½
d1

0
0
d2
� 2 R2�2, d14d2, and S1 2 R

2�2 is orthogonal, we have

kD�11 k ¼ kS1D
�1
1 k ¼

1

d2
(35)

and

k bD�11 �D�11 k ¼ kD
�1
1 ðD1 � bD1Þ bD�11 k

pkD�11 k
2kD1 � bD1k þHOT

¼
d1

d2
2

eþHOT. ð36Þ

From Eqs. (33)–(36) and (31), we then obtain

k bY 1 � Y 1kpc3eþHOT, (37)

where

c3 ¼
d1

d2
2

þ
c2

d2

 !
kZ1k þ

c1

d2
.

Since EM ¼ ½
x
0

0
Z�, we have

k bEM � EMk ¼ maxfjbx� xj; jbZ� Zjg. (38)

We now obtain the bounds for jẑ� zj, and jẐ� Zj.
From Eq. (20) and relations (17)–(19), we know that

x ¼ xðl1; m1Þ ¼ xða1; b1;j1;c1Þ,

Z ¼ Zðl1; m1Þ ¼ Zða1; b1;j1;c1Þ,
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where l1 ¼ a1 þ ib1 and m1 ¼ j1 þ ic1. In addition, we havebx ¼ bxða1; b1;j1;c1Þ ¼ xðba1; bb1; bj1;
bc1Þ þHOT,bZ ¼ bZða1; b1;j1;c1Þ ¼ Zðba1; bb1; bj1;
bc1Þ þHOT.

So,

bx� x ¼
qx
qa1

Daþ
qx
qb1

Dbþ
qx
qj1

Djþ
qx
qc1

DcþHOT, (39)

bZ� Z ¼
qZ
qa1

Daþ
qZ
qb1

Dbþ
qZ
qj1

Djþ
qZ
qc1

DcþHOT, (40)

where Da ¼ ba1 � a1, Db ¼ bb1 � b1, Dj ¼ bj1 � j1, and Dc ¼ bc1 � c1. Since m1 ¼ jþ ic is a
prescribed number, we need not calculate it. The numbers Dj and Dc are usually much smaller
than Da or Db. We can hence ignore terms involving Dj or Dc in Eqs. (39) and (40). Hence, we
are only concerned with those terms related to Da or Db in the estimation of the error bounds for x
and Z. From Eqs. (39) and (40), we have

jbx� xjp
qx
qa1

���� ���� jDaj þ qx
qb1

���� ���� jDbj þHOT

p
qx
qa1

���� ����þ qx
qb1

���� ����� �
jbl1 � l1j þHOT,

jbZ� Zjp
qZ
qa1

���� ���� jDaj þ qZ
qb1

���� ���� jDbj þHOT

p
qZ
qa1

���� ����þ qZ
qb1

���� ����� �
jbl1 � l1j þHOT.

After performing some tedious calculations, it can be shown that jqx=qa1j, jqx=qb1j, jqZ=qa1j and
jqZ=qb1j are bounded by the relative rational functions in a1, b1 and jl1j. More precisely, one can
prove that

jbx� xjp
jz1ða1; b1Þj
z2ðjl1jÞ

jbl1 � l1j þHOT, (41)

jbZ� Zjp
jB1ða1; b1Þj
B2ðjl1jÞ

jbl1 � l1j þHOT, (42)

where z1, B1 are low degree polynomials in a1, b1, and z2, B2 are low-degree polynomials in jl1j.
Since jl1ja0, z2 and B2 are non-zero, and both bounds in Eqs. (41) and (42) are finite. Again,

jbl1 � l1jp
1

ð1þ jl1j2ÞjzH1 y1j
e. (43)

Substituting Eqs. (41)–(43) into Eq. (38), we have

k bEM � EMk ¼ maxfjbx� xj; jbZ� Zjgpc4eþHOT, (44)
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where

c4 ¼
zða1;b1Þ
Bðjl1jÞ

1

ð1þ jl1j2ÞjzH1 y1j
,

zða1; b1Þ ¼ maxfjz1ða1; b1Þj; jB1ða1;b1Þjg,

Bðjl1jÞ ¼ minfz1ðjl1jÞ; B1ðjl1jÞg.

By using Eqs. (30), (37) and (44), we then obtain

k bY 1
bEM

bY>1 � Y 1EMY>1 kp½2kY 1k kEMkc3 þ kY 1k
2c4� � eþHOT. (45)

Using Eq. (45) in Eq. (29), we finally obtain the following error bound for Mnew:

k bMnew �Mnewkp�kMk2½2kY 1k kEMkc3 þ kY 1k
2c4�. (46)

To estimate the error bounds for Cnew and Knew, we first need to find the error bound for L�11 .
From Eq. (17), we have

kbL�11 � L�11 k ¼ k
bD1
bL�11

bD�11 �D1L�11 D�11 kpc5eþHOT,

where

c5 ¼
d1

d2

d1

d2jl1j
þ

1

jl1j
þ

1

ð1þ jl1j2ÞjzH1 y1j

 !
.

Hence, by a similar process as above, we obtain the error bounds for Cnew and Knew as given
below

k bCnew � Cnewkp2ekMk kKk kEMk
d1c3

d2jl1j
þ c5

� �
þ

c4

jl1j

� �
, (47)

k bKnew � KnewkpekKk2 2kY 1k kEMk
d2
1c3

d2
2jl1j

2
þ kY 1k

2 2d1

d2jl1j
kEMkc5 þ

d2
1c4

d2
2jl1j

2

 !" #
. (48)
5. Simultaneous assignment of several real eigenvalues

So far, we have considered the problem of assigning either one real or a pair of complex
conjugate eigenvalues. In this section, we consider the simultaneous assignment of several real
eigenvalues.
It is always possible to embed the sequence of real eigenvalues, fm1; . . . ;mmr

g in the updated
symmetric matrix pencil, FnewðlÞ, by using the formula (7) recursively, for s ¼ 1; . . . ;mr

Ms ¼Ms�1 � eslsMs�1ysy
>
s Ms�1,

Cs ¼ Cs�1 þ esðMs�1ysy
>
s Ks�1 þ Ks�1ysy

>
s Ms�1Þ,

Ks ¼ Ks�1 �
es

ls

Ks�1ysy
>
s Ks�1, ð49Þ
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where M0 ¼M, C0 ¼ C and K0 ¼ K , and ys and es are given by

ys ¼ y>s Ms�1ys and es ¼
ls � ms

1� lsmsys

. (50)

By doing so, the eigenvalues will be embedded one at a time. However, it is possible to assign
several of them at a time as long as the mass and stiffness matrices remain positive definite.
The method proposed below delays the updating of the coefficient matrices until all the real

numbers, fysg and fesg, needed for the multi-assignment, have been computed. After all these
quantities have been computed, the coefficient matrices are updated with only one rank-mr

symmetric update. The process will not only be more efficient than that which assigns one
eigenvalue at a time, but it will be rich in Basic Linear Algebra Subroutines Level 3 (BLAS-3),
such as matrix–matrix multiplications, rank-r updates, etc., which will make it suitable for high-
performance computing.
Given r real numbers, fm1; . . . ;mrg, the following method computes a positive integer, mrpr, the

matrices W and U, and the diagonal matrices DM , DC and DK , such that the updated symmetric
matrix pencil, FnewðlÞ ¼ l2Mnew þ lCnew þ Knew, has the spectrum

specðFnewðlÞÞ ¼ fm1; . . . ; mmr
; lmrþ1; . . . ; l2ng,

where

Mnew ¼M �WDMW>, (51)

Cnew ¼ C þUDCW> þWDCU>, (52)

Knew ¼ K �UDKU>. (53)

To develop formula (51), we consider the mrth iteration of Eq. (49) and observe that

Mmr
¼M0 �

Xmr

s¼1

eslsMs�1ysy
>
s Ms�1

¼M0 � ½M0y1; . . . ;Mmr�1ymr
�

e1l1

. .
.

emr
lmr

26664
37775½M0y1; . . . ;Mmr�1ymr

�>. ð54Þ

We also observe that, for s ¼ 1; . . . ;mr,

ys ¼ y>s Ms�1ys

¼ y>s ½Ms�2 � es�1ls�1Ms�2ys�1y
>
s�1Ms�2�ys

¼ y>s Ms�2ys � es�1ls�1ðy
>
s Ms�2ys�1Þðy

>
s�1Ms�2ysÞ ð55Þ

and

Ms�1ys ¼ ½Ms�2 � es�1ls�1Ms�2ys�1y
>
s�1Ms�2�ys

¼Ms�2ys � es�1ls�1ðy
>
s�1Ms�2ysÞMs�2ys�1. ð56Þ
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Therefore, formula (51) can be derived from Eq. (54) by letting

W ¼ ½M0y1; . . . ;Mmr�1ymr
� and DM ¼

e1l1

. .
.

emr
lmr

2664
3775.

In addition, the matrices DM and W can be determined by using recursions (55) and (56).
Similarly, formulae (52) and (53) can be obtained for the appropriate matrices U, DK and DC .

Our discussions above are summarized in the algorithms below.

Algorithm 5.1 (Simultaneous Assignment of Real Eigenvalues).
Input:
(i)
 A set of real numbers fmig
r
i¼1,
(ii)
 A set of unwanted real eigenpairs fðli; yiÞg
r
i¼1,
(iii)
 Symmetric matrices M, C and K such that M, and K are positive definite.
Output: Integer mr, and the symmetric matrices Mnew, Cnew and Knew such that the updated
quadratic matrix pencil FnewðlÞ contains the mr eigenvalues in the spectrum ðmrprÞ while the
other eigenvalues and the associated eigenvectors remain unchanged.

Step 1: Compute mi ¼Myi, ki ¼ Kyi, i ¼ 1; . . . ; r.
Step 2: Compute aij ¼ y>i mj; bij ¼ y>i kj; j ¼ i; . . . ; r; i ¼ 1; . . . ; r.
Step 3: Set Z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y>1 Ky1

q
Update a1j ¼ a1j=Z1; b1j ¼ b1j=Z1; j ¼ 1; . . . ; r.

Step 4: Set e1 ¼
l1�m1

1�l1m1a11
.

Step 5: For s ¼ 2; . . . ; r.
For i ¼ s; . . . ; r.
For j ¼ i; . . . ; r.
Update aij ¼ aij � es�1ls�1as�1;ias�1;j; bij ¼ bij �

es�1

ls�1
bs�1;ibs�1;j.

End for j.
End for i.

Compute es ¼
ls�ms

1�lsmsass
.

If bss40,then

Compute Zs ¼
ffiffiffiffiffiffi
bss

p
.

Update ai;s ¼ ai;s=Zs; bi;s ¼ bi;s=Zs; i ¼ 1; . . . ; s.
Update as;j ¼ as;j=Zs; bs;j ¼ bs;j=Zs; j ¼ 1; . . . ; s.
Compute mr ¼ s.

Else Exit Loop.
End for s.
Step 6: Normalize mi ¼ mi=Zi; ki ¼ ki=Zi; i ¼ 1; . . . ;mr.
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Table 1

Approximate flop counts for embedding r ðr5nÞ real eigenvalues

Strategy Parameters Mnew, Cnew, Knew Total

r sequential assignment 6n2r 7n2r
2

19n2r
2

Simultaneous assignment 4n2rþ 4nr2 3n2rþ 3nr 7n2rþ 4nr2
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Step 7: For s ¼ 2; . . . ;mr,
For i ¼ s; . . . ;mr,
Update mi ¼ mi � es�1ls�1as�1;ims�1; ki ¼ ki �

es�1

ls�1
bs�1;iks�1.

End for i.
End for s.

Step 8: Set W ¼ ½m1;m2; . . . ;mmr
�; U ¼ ½k1; k2; . . . ; kmr

�; DM ¼ diagðe1l1; e2l2; . . . ; emr
lmr
Þ,

DC ¼ diagðl1; l2; . . . ; lmr
Þ and DK ¼ diag

e1
l1
;
e2
l2
; . . . ;

emr

lmr

� �
.

Step 9: Update

Mnew ¼M �WDMW>,

Cnew ¼ C þUDCW> þWDCU>,

Knew ¼ K �UDKU>.
Return

To show the efficiency of the simultaneous assignment process, we compare the flop counts of
Algorithm 5.1, with those of the successive assignment strategy by using non-equivalence
transformation (7). In Table 1, we list the flop counts of these two methods.
From Table 1, we see that the simultaneous assignment method is more efficient than the

successive assignment procedure.
6. Numerical results

In this section, we illustrate the efficiency and reliability of the proposed method by using two
examples: The first one is taken from Harwell–Boeing Collections [25]. The data of the second is
the simulated data of a real-life aerospace example provided to us by the Boeing company.
All numerical implementations were performed on a IBM Pentium III machine using MATLAB.

6.1. Example 1 (Updating of a statistically condensed oil rig model)

Consider the model ðM;D;KÞ where
�
 The matrices M 2 R66�66 and K 2 R66�66 come from the statically condensed oil rig model of
the Harwell–Boeing set BCSSTRUC1 [25]. The matrix M is symmetric positive definite and the
matrix K is symmetric positive semi-definite.

�
 The damping matrix C is defined by C ¼ rI66, with r ¼ 1:55.
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This model has 132 eigenvalues out of which eight are real eigenvalues fl1; . . . ; l8g, given by

fl1 l2 l3 l4g ¼ f�3:4628 � 3:5709 � 5:3584 � 9:2761g,

fl5 l6 l7 l8g ¼ f�13:1972 � 13:4480 � 27:5536 � 44:5031g

and 62 pairs of complex conjugate eigenvalues that are not shown here. The set fl1; . . . ; l8g is
changed to the set fm1; . . . ; m8g, where

fm1 m2 m3 m4g ¼ f�3:32 � 3:75 � 5:05 � 9:07g,

fm5 m6 m7 m8g ¼ f�13:59 � 13:04 � 27:31 � 42:11g.

Algorithm 5.1 is then applied, giving matrices DM , DC , and DK as follows:

DM ¼ diagð0:6697 � 0:9138 3:6368 � 2:4231 2:6340 � 2:6111 17:3927 � 197:1462Þ,

DC ¼ diagð�0:1934 0:2559 � 0:6787 0:2612 � 0:1996 0:1942 � 0:6312 4:4299Þ,

DK ¼ diagð0:0558 � 0:0717 0:1267 � 0:0282 0:0151 � 0:0144 0:0229 � 0:0995Þ.

The matrices W and U are not shown here. The matrices Mnew;Cnew and Knew are then computed,
using the update formulas, as a single rank-8 update of the matrices M;D, and K.

Verification: Define

L ¼ diagðl1; . . . ; l132Þ,
~L ¼ diagðm1; . . . ; m8; l9; . . . l132Þ,

Y ¼ ½y1 ::: y132�

then

kMnewY ~L
2
þDnewY ~Lþ KnewXkF ¼ 1:7709� 10�7,

which shows that the multiple embedding was successful and produced no spill-over.

Fig. 5 shows the bar graphs of the magnitude of the components of the matrix K � Knew. Similar
graphs exist for the matrices M �Mnew and D�Dnew.
6.2. Example 2

The Boeing Simulated Example. The test matrices K, C, M in this example come from an
aerospace industry problem in constructing aircraft structural models.
Ten complex conjugate pairs of eigenvalues, which seem to be ‘‘troublesome’’, need to be

embedded in the given model. This is done by applying Algorithm 3.1 ten times, assigning one pair
at a time. The results of implementation are plotted in the figure below. To understand the error
behaviors more clearly, both the absolute and the logarithms of the error matrices have been
computed and the absolute errors for the stiffness matrix are shown here in Fig. 6. The logarithm
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of the matrix M, denoted by logM, is defined by

logMði; jÞ ¼
log10jMnewði; jÞ �Mði; jÞj if jMnewði; jÞ �Mði; jÞj410�4;

0 otherwise:

(
The results clearly show that our updating with low-rank transformations is successful. Furthermore,
the results of the type obtained here provide an insight for the practicing engineers into what rows
of the mass, stiffness or damping matrices need modification. For this particular example, our plots
show that the largest errors occur around 3rd and 37th rows and columns in all these matrices. These
rows and columns, therefore, need most modifications for the application under considerations.
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7. Conclusion

The symmetric eigenvalue embedding problem addressed in this paper is the one of updating a
symmetric finite element generated second-order model in such a way that the updated model
remains symmetric, and a small subset of unwanted eigenvalues is replaced by a suitably user-
chosen set, while the remaining large number of eigenvalues and eigenvectors do not change. The
problem is intimately related to the partial eigenvalue assignment problem in control theory,
which is usually solved by using feedback control. Unfortunately, with the use of feedback
control, the symmetry of the model is completely destroyed. A novel symmetry preserving
algorithm and the associated theories are presented in this paper. The proposed method results in
a symmetric low-rank transformation of the original model, with the required properties. The
method allows simultaneous assignment of several real eigenvalues; however, complex eigenvalues
have to be assigned one at a time. Further research on simultaneous assignment of more than one
complex eigenvalues is currently underaway. The results of the paper contribute to the progress in
the solution of a well-known problem of immense practical importance in vibration industries:
namely, the finite-element model updating problem, which is concerned with updating a
symmetric finite-element model such that the updated model is symmetric, a small number of
measured eigenvalues and eigenvectors from a practical structure is incorporated into the model,
and the remaining large number of eigenvalues and eigenvectors that do not participate in the
updating process remain invariant. Furthermore, because the proposed algorithms are rich in
Basic Linear Algebra Subroutine-3 (BLAS-3) level operations, they can be implemented using
high-performance software packages such as LAPACK on today’s high-speed computers.
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